Polarconference 2016 – DTU 1-2 Nov 2016

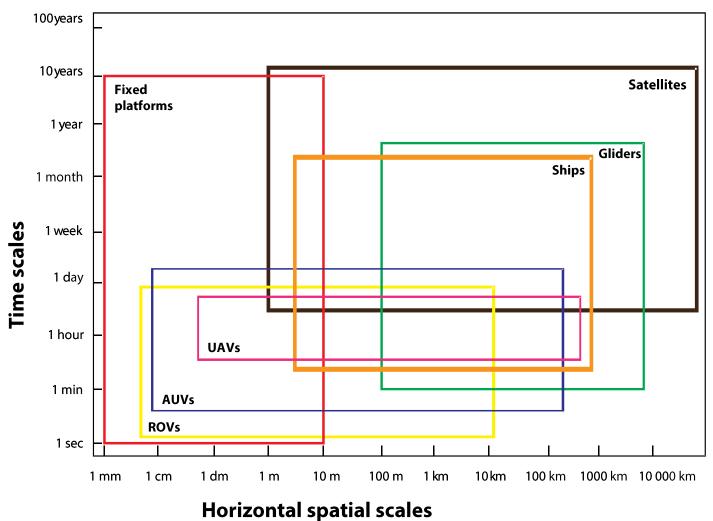
DTU

-{2.7182818284

Unmanned Surface Vessels

- Opportunities and Technology

Mogens Blanke


DTU Professor of Automation and Control, DTU-Elektro Adjunct Professor at AMOS Center of Excellence, NTNU, Norway E-mail: <u>mb@elektro.dtu.dk</u>

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^i}{i!} f^{(i)}$

DTU Elektro Institut for Elektroteknologi

Time – space coverage of technologies

Mapping and monitoring of marine resources and environment for governance and decision making. Territory surveillance, security.

Unmanned surface vehicles USV

USVs:

- Own missions
 - Surveillence
 - Intervention
 - Rescue
- Integrated missions air
- Support for underwater
- Mission specific design: speed, range, instruments

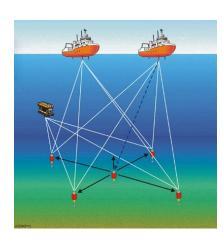
Lower cost than manned

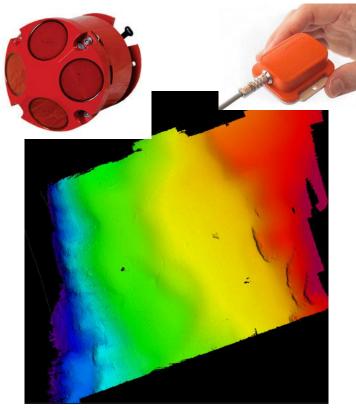
24/7 and long endurance


Multi-vehicle operation

Excelent for tedious tasks

Smaller environment footprint


Autonomy in operation: Maritime Robotics (Trondheim)


Images used by courtsey of Maritime Robotics (patented technologies)

Navigation sensors -

- Position:
 - GPS at surface for position fix
 - Acoustics
 - Optics (images, video, laser)
- Depth (pressure)
- Altitude and relative velocity to water or seafloor (Doppler Velocity Log)
- Orientations and accelerations, (Inertial Measurement Units)
- Radar (various bands to distinguish different objects)
- Vision systems visible, infrared, multi-spectral, stereo-vision.

DTU

Increasing the Level of Autonomy

Level		Descriptor	Guidance	Navigation	Control	EEM
	10	Fully autonomous	Human level decision making	Human like navigation capabilities	Same or better performance as for a piloted vehicle in the same conditions	Very High
	4	Real-Time Obstacle/Event Detection and Path Planning	Hazard avoidance, Real- time path planning and re-planning	Perception capabilities for obstacles, targets and environment, low fidelity situation awareness	Robust trajectory tracking capabilities	Mid-low
	3	Fault/Event Adaptive USV	Low-level decisions and execution of pre- programmed tasks	Detection of hardware and software faults	Robust adaptive controller	Low
	2	ESI Navigation (e.g. non-GNSS)	Waypoint guidance of pre-planned paths	Sensing and state estimation by the USV, all perception and situational awareness by the operator	Control commands are computed by the autopilot	Low
	1	Automatic Control	Waypoint guidance of pre-planned paths	Sensing and state estimation by the USV, all perception and situational awareness by the operator	Control commands are computed by the autopilot	Low
	0	Remote Control	Performed by external system (mainly human operator)	Sensing done on-board the vehicle, data are processed externally (human operator)	Control commands are given by a remote external system	Very Low

Kendoul, F., **Survey of Advances in Guidance, Navigation, and Control of Unmanned Rotorcraft Systems**, J. Field Robotics, 29, 2012

7 DTU Electrical Engineering Technical University of Denmark Smart Sensor Based Obstacle Detection for High-Speed Unmanned Surface Vehicle

IFAC MCMC2015, Copenhagen August 24-26

Obstacle Detection for High-Speed Unmanned Surface Vehicle

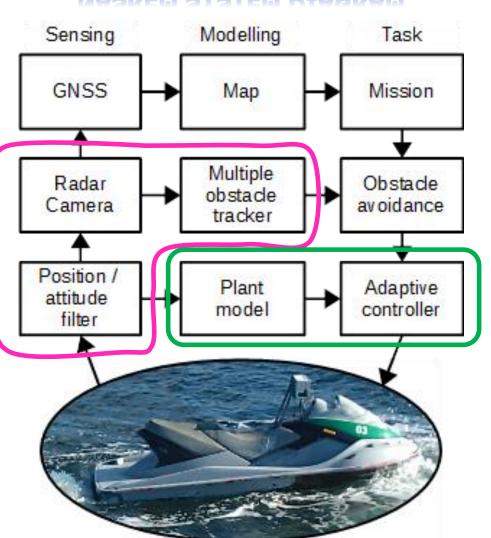
- High-speed unmanned surface vehicle
- Desired <u>Autonomy Level 4</u>
 - Robust adaptive controller
 - Perception capabilities for obstacles/environment
 - Hazard avoidance/path re-planning

 \mathbf{X}

DETECTION REQUIREMENTS

Class of obstacles

 Boats, yachts, and buoys with radar reflectors


Range of detection (30m/s)

- Safety: 60m
- Evasive: 30m

8 DTU Electrical Engineering Technical University of Denmark Smart Sensor Based Obstacle Detection for High-Speed Unmanned Surface Vehicle IFAC MCMC2015, Copenhagen August 24-26

Dan Herman: Overall System Architecture

NASREM SYSTEM DIAGRAM

Previous work

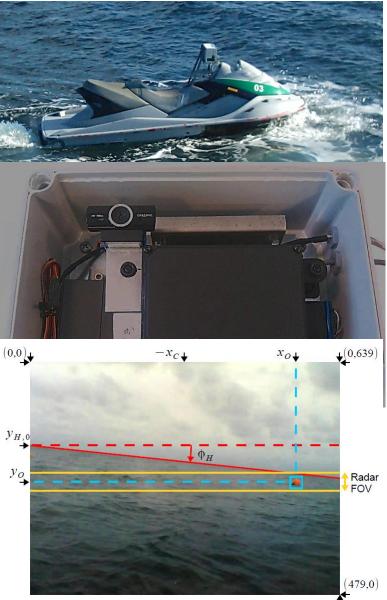
- Plant model
- Way-point controller
- Station keeping controller

Contributions

- Vision assisted position and attitude filter
- Multiple obstacle tracker

Herman, Galeazzi, Andersen and Blanke: Smart Sensor Based Obstacle Detection for High-Speed Unmanned Surface Vehicle. IFAC-Papers Online vol 48 (16), pp190-197, DOI: 10.1016/j.ifacol.2015.10.279

9 DTU Electrical Engineering Technical University of Denmark Smart Sensor Based Obstacle Detection for High-Speed Unmanned Surface Vehicle IFAC MCMC2015, Copenhagen August 24-26


Vehicle & Sensors Suite

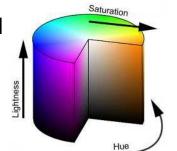
. Unmanned marine craft

- Modified for autopilot and remote control
- . Sensors for obstacle detection
 - Automotive scanning radar
 - Mid range: 50m +/- 45°
 - Long range: 175m +/- 15°
 - Vertical FOV: 5°
 - Fs = 20Hz
 - Onboard low-cost camera
 - Resolution 640 x 480 pixels
 - FOV: 52° x 39°
 - Fs = 10 fps

Navigation sensors

- GPS (Fs = 3-4 Hz)
- 6DOF IMU (Fs = 100Hz)
- 3DOF Magnetometer (Fs = 100Hz) set

Image Object Detection: Challenges

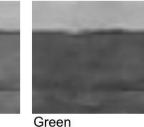

DTU

Illumination

- Overcast
 - Constant illumination
 - Detectable: RGB and saturation
- Sun reflections
 - Numerous false detections
 - Detectable: RGB
- Good illumination
 - Detectable: Saturation and hue

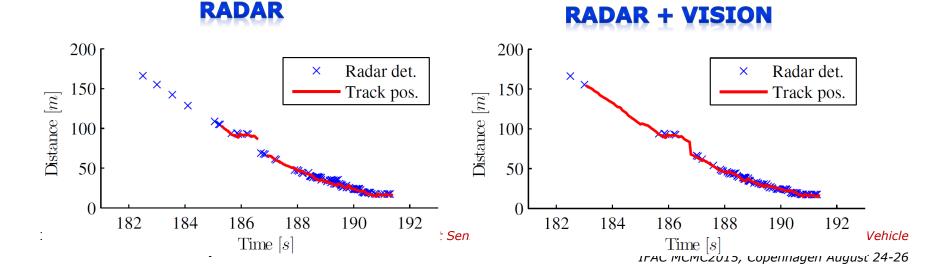
Post-processing detection

- Adaptive threshold


Input

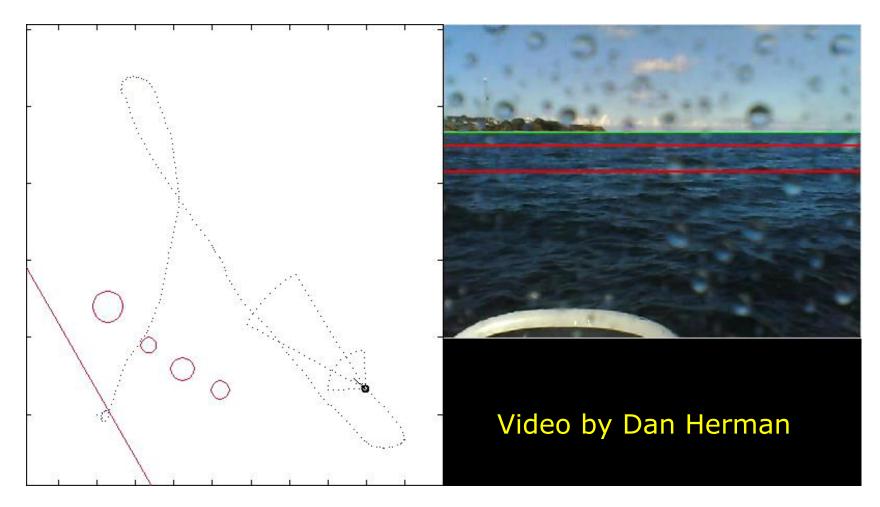
Red

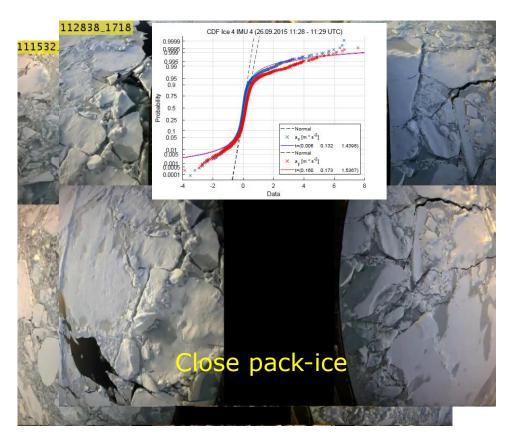
Saturation


11 **DTU Electrical Engineering** Technical University of Denmark Smart Sensor Based Obstacle Detection for High-Speed Unmanned Surface Vehicle

IFAC MCMC2015, Copenhagen August 24-26

Sea Trial – Track Persistence Assessment

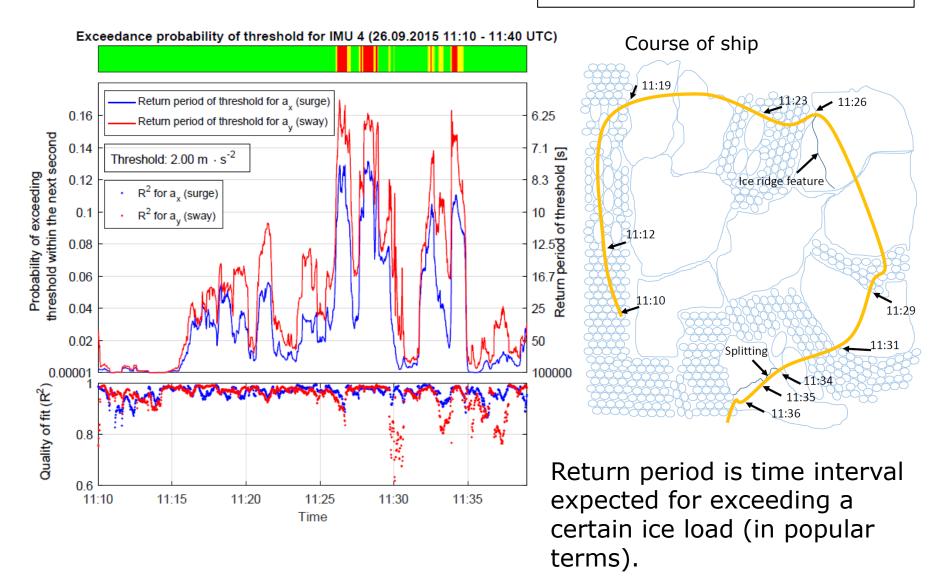

- Pitch and roll motion
 - Exceed radar vertical FOV
- Radar maintained
- . Radar assisted by vision
 - Range of detection increased (doubled)
 - Increased track persistence



Results: Obstacle detection for safe navigation

Vehicles in ice ??

Hans-Martin Heyn (AMOS) at the North Pole



Accelerometers measure ship accelerations. 4 cameras monitor ice Distribution of accelerations disclose type/severity of ice load. Cameras are used for validation

PolarConference 2016

Short term Ice-load prediction

Heyn, Blanke, Skjetne: Estimation of extreme ice accelerations based on signal detection. (NTNU – AMOS results)

Unmanned and Autonomous Vessels:

"I was navigating by sight because I knew the depths well and I had done this maneuvre three or four times" . Captain Schettino Master, Costa Concordia. Source: BBC.com

How Can Autonomy Enhance Safety

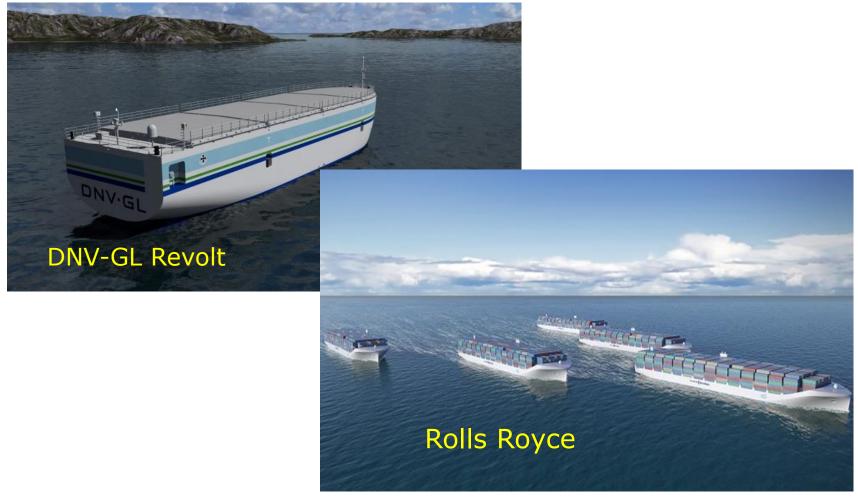
Simplify information

Perception -> warn if danger

Suggest solutions

Make autopilot "intelligent" – aware of context

Intervene in critical situations


Øystein Engelhardsen: Autonomy at Sea. Plenary at IFAC MCMC'2015 Conference at DTU.

Navigate autonomously

Supervise remotely

Development and research in the comercial area

Technology is available in the very near future.

How do we wish to take advantage of its benefits in the arctic areas

